
Testability of Post-Quantum 
Cryptographic Algorithms

atsec Bootcamp
2/27/24
Chris Celi, CAVP Program Manager
christopher.celi@nist.gov



Outline

• About the Cryptographic Algorithm Validation Program (CAVP)

• About the Automated Cryptographic Validation Test System (ACVTS)

• Post-Quantum Cryptography at NIST

• Validation testing on ‘new’ algorithms

2



Automated Cryptographic Validation Testing 
System (ACVTS) provides automated validation 
testing of approved security functions and 
sensitive security parameter (SSP) generation 
and establishment methods.

Cryptographic Algorithm Validation Program

3
"#$%&' csrc.nist.gov/projects/cryptographic-algorithm-validation-program

Approved (i.e, FIPS-approved and 
NIST Recommended) security 
functions and SSP generation and 
establishment methods for FIPS 
140-3 are found in SP 800-140Cr1 
and SP 800-140Dr1.

• ACVTS Prod (2019) used by accredited labs to conduct validation testing.
• ACVTS Demo (2017) is a sandbox-style environment for anyone to request access and test.
• Over 2.3M vector sets served between Demo and Prod.
• 17ACVT scope open to first-party test labs, see NIST Handbook 150-17.
• Source code at https://github.com/usnistgov/ACVP-Server

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://github.com/usnistgov/ACVP-Server


Cryptographic Algorithm Validation Program

• Goal: achieve two major assurances

Correctness

• Given a set of inputs, can the 
implementation generate the 
expected outputs

• Randomly generate inputs, 
compare against a reference 
implementation output

Security

• Does the implementation differ 
from the standard in any way that 
compromises the security 
assertions of the algorithm

• Target tests towards areas of 
weakness

4



ACVTS

• Open source Gen/Vals
• C# code used to generate and validate test vectors
• Continuously improved by the CAVP
• https://github.com/usnistgov/ACVP-Server

• Offers a work bench to constantly improve the level of assurance

• CAVP goal is to introduce Demo testing for draft algorithm standards, 
to enable Prod testing once the standard is published

5

https://github.com/usnistgov/ACVP-Server


Post-Quantum Cryptography

• NIST started the Post-Quantum Cryptography Standardization effort in 
2016 with a call for proposals

• Three draft standards have been published from these proposals with 
more to come soon

• Draft FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM)
• Draft FIPS 204, Module-Lattice-Based Digital Signature Standard (ML-DSA)
• Draft FIPS 205, Stateless Hash-Based Digital Signature Standard (SLH-DSA)

• Full publications expected mid-2024
6



Post-Quantum Cryptography

• ML-KEM
• Key Generation, Encapsulation, Decapsulation

• ML-DSA
• Key Generation, Signature Generation, Signature Verification

• SLH-DSA
• Key Generation, Signature Generation, Signature Verification

7



ML Key Generation

• Handled similarly for both ML-KEM and ML-DSA

• Get a random 256-bit seed*

• Expand it to the number of needed bits*

• Generate a number of vectors and matrices, the key pair*

8



ML Key Generation

• Get a random 256-bit seed*
• Generated from a deterministic random bit generator (DRBG)
• Is the seed able to be provided as input to the function?

• Expand it to the number of needed bits*
• How many bits are needed?

• Generate a number of polynomial vectors and matrices, the key pair*
• Values are constrained by a modulo, how do we ensure uniformity?

9



ML Key Generation

Correctness

• Generate random seeds, and 
expected keys

• Test implementation must 
generate the exact key

Security

• Impossible to determine the seed 
based on the generated key

• As long as every seed is allowed, 
there should not be an issue

• Must require that the seed is able to be taken as input
• Random 256-bit seed, expanded using SHAKE

10



ML Key Generation Rejection Sampling

• Uniform random values over an odd range

• Using bytes, we need a random [0, q] for some prime q

• Sample the bytes randomly, but reject the bytes if the value is out of 
the desired range

• Use SHAKE as a pseudorandom function, and continue requesting 
bytes until we have all the random values we need

11



ML Key Generation Rejection Sampling

• ML-DSA
• Half byte to generate [-2, 2] or [-4, 4]

-2, -1, 0, 1, 2 = 5 total values

4 bits = 16 total values

2 – (r mod 5), unless r = 15

15/16 successes, 1/16 rejections

-4, -3, -2, -1, 0, 1, 2, 3, 4 = 9 total values

4 bits = 16 total values

4 – r, unless r >= 9

9/16 successes, 7/16 rejections

12



ML Key Generation

Correctness

• Does the implementation handle 
the average number of 
rejections?

• Random seeds, over a number of 
test cases

Security

• Does the implementation handle 
the worst case number of 
rejections?

• Well, we can mine some Bitcoin…

• Find a seed that leads to as many rejections as possible
• Sequence of half-bytes (r1, r2, r3…) = SHAKE(seed)

13



ML Key Generation

• Need to find seed, where SHAKE(seed) = 0xFFFFFFF…

• Can only try every possible seed, and store useful results to be used 
on-demand in testing

• How many rejections is enough?

• Similar for ML-KEM, where the range is [0, 3329] sampled from 12 
bits, 4096 possible values

14



ML-DSA Signatures

• Also uses rejection sampling on the signature generation
• Verification has several rejection criteria

Correctness

• Can an implementation generate 
a correct signature for given 
inputs?

• Can an implementation generate 
the correct signature for given 
inputs?

Security

• Can an implementation handle 
many rejections?

• Are all checks used when 
verifying a signature?

15



ML-DSA Signatures – “A” versus “The”

• Testing will likely include both

A signature

• Provide some inputs to the client

• Run Signature Verification to see 
if the signature is valid

• Allows greater flexibility for the 
randomized variant

The signature 

• Provide all inputs to the client

• Compare the generated signature 
to the expected signature

• Allows testing of specific edge 
cases

16



ML-DSA Signature Verification

• Several potential reasons to reject a signature

• Keys are byte-strings, concatenations of several encoded values, each 
can be tested

• Relatively easy to modify specific bits in a signature or key

17



ML-KEM Encapsulation/Decapsulation

• Two important values, shared key K and ciphertext c

• Encapsulating party generates K and locks it in c

• Decapsulating party unlocks c to find K

• Loosely similar to Signature Generation and Verification

• Lots can go wrong while decapsulating a value but Decapsulation will 
always return something that looks like K
• “Implicit rejection”

18



ML-KEM Encapsulation/Decapsulation

• Encapsulation – similar discussion to ML-DSA SigGen
• An encapsulation versus the encapsulation

• Decapsulation – similar discussion to ML-DSA SigVer
• Modifying parts of the key and ciphertext to trigger various failure 

conditions
• Compare using the implicit rejection values rather than true/false

19



ML-KEM Decapsulation

• Decapsulation uses the same internal K-PKE.Encrypt()function 
that encapsulation uses

• This function is directly tested with encapsulation tests

• What if the implementation only uses decapsulation? 

• Decapsulation would not directly check the results of K-
PKE.Encrypt()are correct

• Potential component tests for the internal function necessary
20



Tell us about the cool things 
you’re testing with ACVTS!

Want to contribute? See our 
GitHub 
https://github.com/usnistgov/AC
VP-Server

Conclusion

Questions?

CAVP Program Manager
Chris Celi
christopher.celi@nist.gov

21

https://github.com/usnistgov/ACVP-Server
https://github.com/usnistgov/ACVP-Server

