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 About the Cryptographic Algorithm Validation Program (CAVP)
 About the Automated Cryptographic Validation Test System (ACVTS)
* Post-Quantum Cryptography at NIST

* Validation testing on ‘new’ algorithms



Cryptographic Algorithm Validation Program NIST

Automated Cryptographic Validation Testing Approved (i.e, FIPS-approved and
System (ACVTS) provides automated validation T (e S
testing of approved security functions and Junctions and SSP generation and

. g PP ) y . establishment methods for FIPS
sensitive security parameter (SSP) generation 140-3 are found in SP 800-140Cr1
and establishment methods. and SP 800-140Dr1.

ACVTS Prod (2019) used by accredited labs to conduct validation testing.

ACVTS Demo (2017) is a sandbox-style environment for anyone to request access and test.
Over 2.3M vector sets served between Demo and Prod.

17ACVT scope open to first-party test labs, see NIST Handbook 150-17.
Source code at https://github.com/usnistgov/ACVP-Server
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https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://github.com/usnistgov/ACVP-Server

Cryptographic Algorithm Validation ProgramNIsST

* Goal: achieve two major assurances

Correctness Q Security a

* Given a set of inputs, can the * Does the implementation differ
implementation generate the from the standard in any way that
expected outputs compromises the security

assertions of the algorithm
* Randomly generate inputs,
compare against a reference * Target tests towards areas of
implementation output weakness



ACVTS

* Open source Gen/Vals
 CH# code used to generate and validate test vectors
* Continuously improved by the CAVP
* https://github.com/usnistgov/ACVP-Server

e Offers a work bench to constantly improve the level of assurance

e CAVP goalis to introduce Demo testing for draft algorithm standards,
to enable Prod testing once the standard is published


https://github.com/usnistgov/ACVP-Server

Post-Quantum Cryptography

e NIST started the Post-Quantum Cryptography Standardization effort in
2016 with a call for proposals

 Three draft standards have been published from these proposals with
more to come soon

 Draft FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM)
* Draft FIPS 204, Module-Lattice-Based Digital Signature Standard (ML-DSA)
* Draft FIPS 205, Stateless Hash-Based Digital Signature Standard (SLH-DSA)

* Full publications expected mid-2024



Post-Quantum Cryptography

* ML-KEM
 Key Generation, Encapsulation, Decapsulation

* ML-DSA
 Key Generation, Signature Generation, Signature Verification

* SLH-DSA
 Key Generation, Signature Generation, Signature Verification




ML Key Generation

 Handled similarly for both ML-KEM and ML-DSA
* Getarandom 256-bit seed*
 Expand it to the number of needed bits*

* Generate a number of vectors and matrices, the key pair*



ML Key Generation

e Getarandom 256-bit seed*
e Generated from a deterministic random bit generator (DRBG)
 |sthe seed able to be provided as input to the function?

 Expand it to the number of needed bits*
* How many bits are needed?

* Generate a number of polynomial vectors and matrices, the key pair*
* Values are constrained by a modulo, how do we ensure uniformity?



ML Key Generation

* Must require that the seed is able to be taken as input
* Random 256-bit seed, expanded using SHAKE

Correctness

* Generate random seeds, and
expected keys

* Test implementation must
generate the exact key

Security

* Impossible to determine the seed
based on the generated key

* Aslong as every seed is allowed,
there should not be an issue
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ML Key Generation Rejection Sampling

 Uniform random values over an odd range
* Using bytes, we need a random [0, gq] for some prime g

 Sample the bytes randomly, but reject the bytes if the value is out of
the desired range

* Use SHAKE as a pseudorandom function, and continue requesting
bytes until we have all the random values we need
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ML Key Generation Rejection Sampling

* ML-DSA
* Half byte to generate [-2, 2] or [-4, 4]

-2,-1,0, 1, 2 =5 total values -4,-3,-2,-1,0, 1, 2, 3, 4 =9 total values
4 bits = 16 total values 4 bits = 16 total values
2 —(rmod5), unlessr=15 4—r,unlessr>=9

15/16 successes, 1/16 rejections 9/16 successes, 7/16 rejections
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ML Key Generation

Find a seed that leads to as many rejections as possible
Sequence of half-bytes (ry, r,, r5...) = SHAKE(seed)

Correctness Security

* Does the implementation handle * Does the implementation handle
the average number of the worst case number of
rejections? rejections?

* Random seeds, over a number of * Well, we can mine some Bitcoin...

test cases
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ML Key Generation

 Need to find seed, where SHAKE(seed) = OXFFFFFFF...

 Canonly try every possible seed, and store useful results to be used
on-demand in testing

* How many rejections is enough?

e Similar for ML-KEM, where the range is [0, 3329] sampled from 12
bits, 4096 possible values

14



ML-DSA Signatures

* Also uses rejection sampling on the signature generation
* Verification has several rejection criteria

Correctness

* Can an implementation generate
a correct signature for given
inputs?

* Can an implementation generate
the correct signature for given
inputs?

Security

e Can an implementation handle
many rejections?

e Are all checks used when
verifying a signature?

15



ML-DSA Signatures — “A” versus “The”

A signature The signature

* Provide some inputs to the client * Provide all inputs to the client

* Run Signature Verification to see  Compare the generated signature
if the signature is valid to the expected signature

* Allows greater flexibility for the » Allows testing of specific edge
randomized variant cases

e Testing will likely include both
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ML-DSA Signature Verification

* Several potential reasons to reject a signature

* Keys are byte-strings, concatenations of several encoded values, each
can be tested

* Relatively easy to modify specific bits in a signature or key
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ML-KEM Encapsulation/Decapsulation

 Two important values, shared key K and ciphertext c

* Encapsulating party generates K and locks it in c

 Decapsulating party unlocks c to find K

* Loosely similar to Signature Generation and Verification

* Lots can go wrong while decapsulating a value but Decapsulation will

always return something that looks like K
* “Implicit rejection”
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ML-KEM Encapsulation/Decapsulation

* Encapsulation —similar discussion to ML-DSA SigGen
* An encapsulation versus the encapsulation

* Decapsulation — similar discussion to ML-DSA SigVer
 Modifying parts of the key and ciphertext to trigger various failure
conditions
* Compare using the implicit rejection values rather than true/false
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ML-KEM Decapsulation

 Decapsulation uses the same internal K-PKE .Encrypt () function
that encapsulation uses

* This function is directly tested with encapsulation tests
 What if the implementation only uses decapsulation?

 Decapsulation would not directly check the results of K-
PKE.Encrypt () are correct

* Potential component tests for the internal function necessary
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Conclusion NIST

Questions? Tell us about the cool things
you’re testing with ACVTS!

CAVP Program Manager Want to contribute? See our

Chric Cel GitHub
ris Celi https://github.com/usnistgov/AC

christopher.celi@nist.gov VP-Server
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