Testability of Post-Quantum
Cryptographic Algorithms

atsec Bootcamp
2/27/24 _

" Chris Celi, CAVP Program Manager
christopher.celi@nist.gov _

nal Ins e of
S d d d echnolo gy
U.S. Department ofC mme

Outline

 About the Cryptographic Algorithm Validation Program (CAVP)
 About the Automated Cryptographic Validation Test System (ACVTS)
* Post-Quantum Cryptography at NIST

* Validation testing on ‘new’ algorithms

Cryptographic Algorithm Validation Program NIST

Automated Cryptographic Validation Testing Approved (i.e, FIPS-approved and
System (ACVTS) provides automated validation T (e S
testing of approved security functions and Junctions and SSP generation and

. g PP) y . establishment methods for FIPS
sensitive security parameter (SSP) generation 140-3 are found in SP 800-140Cr1
and establishment methods. and SP 800-140Dr1.

ACVTS Prod (2019) used by accredited labs to conduct validation testing.

ACVTS Demo (2017) is a sandbox-style environment for anyone to request access and test.
Over 2.3M vector sets served between Demo and Prod.

17ACVT scope open to first-party test labs, see NIST Handbook 150-17.
Source code at https://github.com/usnistgov/ACVP-Server

B csrc.nist.gov/projects/cryptographic-algorithm-validation-program 3

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://github.com/usnistgov/ACVP-Server

Cryptographic Algorithm Validation ProgramNIsST

* Goal: achieve two major assurances

Correctness Q Security a

* Given a set of inputs, can the * Does the implementation differ
implementation generate the from the standard in any way that
expected outputs compromises the security

assertions of the algorithm
* Randomly generate inputs,
compare against a reference * Target tests towards areas of
implementation output weakness

ACVTS

* Open source Gen/Vals
 CH# code used to generate and validate test vectors
* Continuously improved by the CAVP
* https://github.com/usnistgov/ACVP-Server

e Offers a work bench to constantly improve the level of assurance

e CAVP goalis to introduce Demo testing for draft algorithm standards,
to enable Prod testing once the standard is published

https://github.com/usnistgov/ACVP-Server

Post-Quantum Cryptography

e NIST started the Post-Quantum Cryptography Standardization effort in
2016 with a call for proposals

 Three draft standards have been published from these proposals with
more to come soon

 Draft FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM)
* Draft FIPS 204, Module-Lattice-Based Digital Signature Standard (ML-DSA)
* Draft FIPS 205, Stateless Hash-Based Digital Signature Standard (SLH-DSA)

* Full publications expected mid-2024

Post-Quantum Cryptography

* ML-KEM
 Key Generation, Encapsulation, Decapsulation

* ML-DSA
 Key Generation, Signature Generation, Signature Verification

* SLH-DSA
 Key Generation, Signature Generation, Signature Verification

ML Key Generation

 Handled similarly for both ML-KEM and ML-DSA
* Getarandom 256-bit seed*
 Expand it to the number of needed bits*

* Generate a number of vectors and matrices, the key pair*

ML Key Generation

e Getarandom 256-bit seed*
e Generated from a deterministic random bit generator (DRBG)
 |sthe seed able to be provided as input to the function?

 Expand it to the number of needed bits*
* How many bits are needed?

* Generate a number of polynomial vectors and matrices, the key pair*
* Values are constrained by a modulo, how do we ensure uniformity?

ML Key Generation

* Must require that the seed is able to be taken as input
* Random 256-bit seed, expanded using SHAKE

Correctness

* Generate random seeds, and
expected keys

* Test implementation must
generate the exact key

Security

* Impossible to determine the seed
based on the generated key

* Aslong as every seed is allowed,
there should not be an issue

10

ML Key Generation Rejection Sampling

 Uniform random values over an odd range
* Using bytes, we need a random [0, gq] for some prime g

 Sample the bytes randomly, but reject the bytes if the value is out of
the desired range

* Use SHAKE as a pseudorandom function, and continue requesting
bytes until we have all the random values we need

11

ML Key Generation Rejection Sampling

* ML-DSA
* Half byte to generate [-2, 2] or [-4, 4]

-2,-1,0, 1, 2 =5 total values -4,-3,-2,-1,0, 1, 2, 3, 4 =9 total values
4 bits = 16 total values 4 bits = 16 total values
2 —(rmod5), unlessr=15 4—r,unlessr>=9

15/16 successes, 1/16 rejections 9/16 successes, 7/16 rejections

12

ML Key Generation

Find a seed that leads to as many rejections as possible
Sequence of half-bytes (ry, r,, r5...) = SHAKE(seed)

Correctness Security

* Does the implementation handle * Does the implementation handle
the average number of the worst case number of
rejections? rejections?

* Random seeds, over a number of * Well, we can mine some Bitcoin...

test cases

13

ML Key Generation

 Need to find seed, where SHAKE(seed) = OXFFFFFFF...

 Canonly try every possible seed, and store useful results to be used
on-demand in testing

* How many rejections is enough?

e Similar for ML-KEM, where the range is [0, 3329] sampled from 12
bits, 4096 possible values

14

ML-DSA Signatures

* Also uses rejection sampling on the signature generation
* Verification has several rejection criteria

Correctness

* Can an implementation generate
a correct signature for given
inputs?

* Can an implementation generate
the correct signature for given
inputs?

Security

e Can an implementation handle
many rejections?

e Are all checks used when
verifying a signature?

15

ML-DSA Signatures — “A” versus “The”

A signature The signature

* Provide some inputs to the client * Provide all inputs to the client

* Run Signature Verification to see Compare the generated signature
if the signature is valid to the expected signature

* Allows greater flexibility for the » Allows testing of specific edge
randomized variant cases

e Testing will likely include both

16

ML-DSA Signature Verification

* Several potential reasons to reject a signature

* Keys are byte-strings, concatenations of several encoded values, each
can be tested

* Relatively easy to modify specific bits in a signature or key

17

ML-KEM Encapsulation/Decapsulation

 Two important values, shared key K and ciphertext c

* Encapsulating party generates K and locks it in c

 Decapsulating party unlocks c to find K

* Loosely similar to Signature Generation and Verification

* Lots can go wrong while decapsulating a value but Decapsulation will

always return something that looks like K
* “Implicit rejection”

18

ML-KEM Encapsulation/Decapsulation

* Encapsulation —similar discussion to ML-DSA SigGen
* An encapsulation versus the encapsulation

* Decapsulation — similar discussion to ML-DSA SigVer
 Modifying parts of the key and ciphertext to trigger various failure
conditions
* Compare using the implicit rejection values rather than true/false

19

ML-KEM Decapsulation

 Decapsulation uses the same internal K-PKE .Encrypt () function
that encapsulation uses

* This function is directly tested with encapsulation tests
 What if the implementation only uses decapsulation?

 Decapsulation would not directly check the results of K-
PKE.Encrypt () are correct

* Potential component tests for the internal function necessary

20

Conclusion NIST

Questions? Tell us about the cool things
you’re testing with ACVTS!

CAVP Program Manager Want to contribute? See our

Chric Cel GitHub
ris Celi https://github.com/usnistgov/AC

christopher.celi@nist.gov VP-Server

21

https://github.com/usnistgov/ACVP-Server
https://github.com/usnistgov/ACVP-Server

